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We investigate overdetermined systems of m linear equations in d unknowns.
We equip IRm with the p-homogeneous metric II x II~ = L~~t I Xi IP, 0 < p < 1,
and seek approximate solutions of the linear system which minimize the error
vector in this metric. After showing that the number of points at which a solution
of this problem can occur is finite, we present several algorithms for solving the
given approximation problem globally and locally. The algorithms apply to the
interesting It-case as well.

I. INTRODUCTION

In this paper, we consider the system of linear equations

Ax = b,

where A is an m X d real matrix, m > d, x E IRd, and bE IRm. For y E IRm
and 0 < P < I, let

m

II Y lip = L I y; IP.
j~l

(1.1)

GivenA, band p, the problem that we study here, referred to as problem (P),
is

(P) Find x E IRd minimizing {lib - Ax lip I x E IRd}.

*Portions of this paper are taken from this author's Ph.D. thesis at Michigan State
University.
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To solve the problem, a dual problem, to be denoted (P*), is introduced,
a relation between (P) and (P*) proved, and a characterization of the solu­
tions of problem (P*) established. Although, in general, problem (P*)
cannot be solved in a computationally feasible manner, it can always be
solved in a finite number of steps. Moreover, efficient algorithms for solving
particular cases and exchange algorithms for finding local solutions of
problem (P*) are outlined.

2. BASIC NOTIONS

It should be noted that 11' Ilv' 0 < p < I, is a p-homogeneous metric
but not a norm on IRm , although the triangle inequality

y + z lip :S; II y lip + II z 111) ,

holds. II . llv is p-homogeneous in the sense that

y, Z E IR"', (2.1)

Also,
!IY lip = 0

ex E IR, y E IR"'.

iff y = o.

(2.2)

(2.3)

The usual Iv norm, i.e., the pth root of (1.1), fails to satisfy the triangle
inequality if one chooses 0 < P < I. However, we still refer to II . Ilv as the
Ip norm and problem (P) as the Ip problem.

Let (. I .) denote the usual inner product on IR"', i.e.,

tn

(x Iy) = L XjYj,
j~I

AT is the transpose of the matrix A. Set

K = Image(A) = {Ax I x E IRd
},

and
K.L = Ker AT = {x E IRm I (x I k) = 0, Vk E K}.

Throughout this paper, we assume that the dimension of K is n and that
bI , ... , bn form a basis for K. Let E: IRm ~ K.L be the orthogonal projection
of IRm onto K.L, where orthogonality is with respect to the inner product (. I '),
and set s = Eb. Let

p = d(b, K) = inf{11 b - k lip IkE K}.
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We assume b rf K, or equivalently p > 0, since the problem is trivial otherwise.
Let (s) denote the linear span of the vector s and let

D = (b i ,,,., bn , s) = (r/, ... , rm
T?,

where ri is the ith row of the m x (n --j- I) matrix D. Finally, let B =

{w E K EB (s) I II w II" :'( I}.
Observe that s - b E K, and consequently des, K) = deb, K). The existence

of a solution of problem (P) follows from the continuity of the I p norm
and the assumption that dim K = n < 00.

3. PROBLEM (P*)

Given problem (P), we associate a dual problem

(P*) Find Z E K EB (s), !I z lip <; I, maximizing
(s I w) over all WE K EB (s), I' W I!p :'( I.

Problem (P*), when IRm is equipped with a norm, was considered by Sreed­
haran in [4]. The relation between problems (P) and (P*) is given in the
following theorem which extends Theorem 2.4 of [4].

THEOREM 3.1. Let z solve problem (P*). Then

(i) pi/pes I z) = (s Is),

and
(ii) b - pI/PZ E K.

Proof

(s i z) = max{(s I w)i 11' E K EB (s), II W lip <; I},

= max{(s 1k + fJs)1 k E K, fJ E IR, k + fJs Iv :'( I},

= max{(s I s) fJ I fJ E IR, k E K, I. k + fJs <; I},

= (s 1s) max{fJ E IR\{O} IkE K, k + s !'p :S;: II! fJ lJi},

- l 1 I i-- (s 1 s) max ~S!II/P k E K 1,, II 'Ip ,

- ( I ) I
- s,s min{11 k -'-- s !I~/P ! k E K} ,

= (s I s)lpl/P.

Thus, pi/pes I z) = (s I s) which is (3.1.1).

(3.1.1)

(3.1.2)
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Let t E K'-. We show that (t [ b .- pl/PZ) = O. Write t ~ u-xs, where
(u , .1')= 0 and ex E IR. Since :: E K ffi (s) and u E KJ.. n (s)J.., (u z)= O.
Also, (u I b) c.= (Eu I b) = (u I Eb) (u [ s) O. Thus, (u i b - pl/VZ) = O.
Next, since E is the orthogonal projection of IR'" onto K-'-. and s = Eb,
we have

(.I' ,1)= (s b),

(s I b - pl/PZ) = (s I b) - pI/P(S z),

= (s ! s) - (s is),

(3.1.3)

by (3.1.3) and (3.1.1). Thus, (t b - pI/ Pz) = O. Since t E K.!.. was arbitrary.
b - pI/}!Z E K. This concludes the proof of Theorem 3.t.

Remark 3.2. [t is interesting to note that the above theorem and its
proof did not use the explicit expression (Ll) for II ·1". We used only the
facts that ,[. II)) satisfies (2.1), (2.3) and that (2.2) holds withp > O.

4. DEFINITIONS AND LEMMAS

We now develop several ideas that will be needed in the next section
to show that problem (P*) can always be solved in a finite number of steps.

Let X be a real linear metric space, i.e., a real vector space on which a
translation invariant metric is defined so that the metric space structure is
compatible with the linear space structure. Denote by x* the algebraic
dual of X.

DEFINITION 4.1. Let X be a real linear metric space, A C X, a E A,
and H a nontrivial hyperplane in X, i.e., H = (x E X !f(x) = OJ, where
fE X*\{O}. We say that H a {h -'-- a! hE H} supports A at a if either

f(x) )0 f(a), Ifx E A or f(x) ~f(a), Ifx E A. (4.1.1 )

LEMMA 4.2. Let X be a real linear metric space with dim X?: 1,fE X*\[OJ,
A = I-I(O), Z E X\A, Z a subspace of X with Z E Z, and Al = A n Z. Then

Al is a hyperplane in Z.

Proof. Sincef(Z) eF 0, Al = An Z == {x E Z ff(x) = OJ, the kernel of a
nonzero linear functional, is a hyperplane in Z.

LEMMA 4.3. Let Y be a subspace of IR"', f a linear functional on Y with
f=i=O on Y, H={XEY'f(x)=O}, and By={XEYlllx':ll I}. Let
Z E Y satis/v (i) 'i z Iv ... ~ 1, (ii) Zi d= 0, i = 1, ... , m, (iii) H --L :: supports Br
at z. Then dim Y = 1.
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Proof dim Y? 1, since Z E Y\{O}. Suppose dim Y> 1. Since dim H =
dim Y - 1 > 0, there exist x, -x E By with f( -x) < 0 <f(x), and since
H + Z supports By at z by hypothesis,j(z) 7'= O. Choose x E H\{O} and define

8i = 1

= I zilxi [

if Xi = 0,

if Xi =Ie 0,
i = 1, ... , fIl, (4.3.1)

8 = t min{8 i [ i = 1,... , m}.

Then I Zi + EXi : > 0 for i = 1, ... , m and I E I < O. Let

(4.3.2)

Now

geE) = Ii z + EX lip, -8 < E < 8. (4.3.3)

(4.3.4)

since X 7'= 0 and 0 < p < 1. Thus g does not have a local minimum for E = O.
Hence there exists y, 0 < I y I < 8, such that

II z + yx lip < 1.

N ow there exists E > 0 such that

(4.3.5)

II az + yx II :'( I for all a E (l - E, 1 + E). (4.3.6)

Let u = (I - E/2) z + yx and v = (l + E/2) Z + yx. By (4.3.6), u, v E By,
and

feu) = (l - E/2)f(z) and f(v) = (l + €/2)f(z). (4.3.7)

Thus, either feu) <fez) <f(v) or f(v) <fez) <feu). In either case, the
hypothesis that H + Z supports By at z is contradicted. Hence dim Y = 1.

Q.E.D.

Before proceeding, we define three symbols which will be used extensively
in the remainder of this paper.

DEFINITION 4.4. Let z E B with II z lip = 1. Define

J(z) = {j I Zj = O},
and let

C(z) = (rJ, j E J(z),

(4.4.1)

(4.4.2)

be a matrix with rows rj , where rj was defined in Section 2. When J(z) is
empty, C(z) is taken to be the zero row vector of n + 1 entries. To make
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C(z) unique, specify that if i, j E J(z) and i < j, then r i appears above 1',

in C(z). Finally, we denote by N(z) the kernel of C(z), i.e.,

N(z):x E [RI/.} , C(z) x OJ. (4.4.3)

THEOREM 4.5. Let Z E B with II Z)I I, f a nontrivial linear functional
on K (B (5), H = f- 1(0), and let H ~- z support Bat z. Then dim N(z) 1.

Proof There exists {3 E [Rn71 such that D{3 = z, where D is defined in
Section 2. Since z oF 0, (3 0 and by the definition of C(z), (3 E N(z). This
shows that dim(N(z» :? I.

Without loss of generality, let I ~= {I, ... , fL] and J(z) = {fL -+- 1. ... , mi.
Set K* =~ {Dx I x E N(z)}, denote by f* the restriction of f to K*, and let
H* = H n K* and B* = B n K*. Clearly, z E B*. Since the rank of D is
n,- I, Dx = 0 implies that x = 0 by the Rank-Nullity Theorem of linear
algebra, and hence dim K* = dim N(z).

Since dim K* :? I, by Lemma 4.2, H* is a hyperplane in K*. Also,
H* --L Z supports B* at z since f * =.f I K*. Finally, each x E K* satisfies
X"+l == .. , == XII/ = O. This suggests dropping the m - fL trailing zeroes
and considering the problem in [R". We make this more precise by setting

by j(x) = j(x1 , ... , x,,) =c f*(x 1 , ... , x"' 0, ... , 0),

fI {x E K j(x) OJ,

B = {x E K i I: x li 11 ~ I),
"where now x ,I p = L I X j P,

j~l

Notice that Z has no coordinates equal to zero and L:-1 I Zj IP = I. Also,
f1 is a hyperplane in K, f1 -+- Z supports B at Z, and dim K = dim K* which
equals dim N(z). Thus by Lemma 4.3, dim K = I, and hence dim N(z) = I.

Q.E.D.

Geometrically, the points on the unit ball at which a hyperplane can support
the unit ball correspond very closely to the corners of a convex polyhedron.
Since these points will be of interest in the solution of problem (P*), we
make the following definition.

DEFINITION 4.6. z E B with Ii z lip = 1 is called a corner point of B or
simply a corner if dim N(z) = 1.
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5. MAIN THEOREMS

7

We are now prepared to prove that the solution of problem (P*) is a
corner point of B and that there are only a finite number of corners.

THEOREM 5.1. If z solves problem (P*), then z is a corner point of B.

Proof Problem (P*) requires us to find z EO' K EB (s), II z lip = I, such
that (s I z) = max{(s I w) I w EO' K EB (s), Ii w lip ~ I}, i.e., find z EO' B such that
K + z supports B at z. Thus if z solves problem (P*), by Theorem 4.5
z must be a corner point of B.

COROLLARY 5.2. Ifz solves problem (P*), then z has at least n coordinates
equal to zero.

Proof dim N(z) = J implies that C(z), defined in (4.4.2), has at least
n rows, and hence z has at least n coordinates equal to zero.

COROLLARY 5.3. If D satisfies the Haar condition, i.e., each n + I rows
of D are linearly independent, then a solution of problem (P*) has exactly n
coordinates equal to zero.

Proof Using Definition 4.6, dim N(z) = 1. Now the Haar condition
forces C(z) to be an n X (n + I) matrix so that z has exactly n coordinates
equal to zero.

COROLLARY 5.4. Suppose that n = m - I and ] Sj I = max{1 Si I Ii =
I,... , m}. Then a solution ofproblem (P*) is z = ej sgn Sj , where ej is the usual
unit basis vector in [R"'.

Proof By Corollary 5.2, z must have at least n = m - I coordinates
equal to zero, and since Ilz!lp = I, z must be one of the vectors ±ek'
1 ~ k ~ m. (±ek I s) = ±Sk is clearly maximized by ej sgn 5j , where
I Sj I == max{1 Si II i = I, ... , m}. Hence ej sgn Sj solves problem (P*).

LEMMA 5.5. If x, yare corner points of B with ley) C lex), then x = ±Y,
and hence lex) = ley).

Proof ley) C lex) implies that N(x) C N(y), and since both N(x) and N(y)
are one-dimensional subspaces of [Rill, N(x) = N(y). From this it follows
that x is a scalar multiple of y. But since x I!p = 1 = 11 y 111" x = ±y.

Q.E.D.

For convenience, we call two corner points x, y of B different if x oF ±Y,
i.e., if they are neither equal nor antipodal, i.e., lex) =F- ley).
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THEOREM 5.6. There are at most C') different corner points of B. Moreover,
if D satisfies the Haar condition, then there are exactly C') different corner
points ofB.

Proof Let the set of G') distinct n element subsets of {I, ... , m} be denoted
by £] , and let u(1), ... , u(q) be a complete enumeration of all the different
corner points of B. The existence of such a q E N will be established in the
course of the proof of this theorem. fn fact, we shall show that to each corner
point u(i) of B we can assign a distinct J E £1 showing that the number of
different corner points of B is at most G').

We inductively define subsets F i and E; of £] by setting F i == U E Ei i
J C J(u(i»} and £i+l = £i\Fi , i?o I. We assert that F; * whenever
u(i) is a corner point of B. ff not, there exists a first index k for which Fk =

Since u(k) is a corner point of B, C(u(k» must contain n linearly independent
rows, say rj, j E J C J(u(k», such that N(u(k» = {x E [Rn+1 i (rj i x) = 0,
j E I} is one-dimensional. Notice also that u;(k) = 0 for all j E J since
J C J(u(k». By assumption,

Hence J C Fl for some I, I "'; I ~ k - I. This shows that J C J(u(l» and hence
u;(/) = 0 for all i E J. Since N(u(l» is also one-dimensional and J C J(u(l»,
we conclude that

N(u(l» =.= {x E [R7Il I (rj I x) = 0, j E Ii.

Moreover, since Ii u(k)l!p = I, u(l)IIJI , u(k) == ±u(/) contradicting the assump­
tion that u(k) and u(l) are different corner points of B. Hence F, =Ie 0,

i = 1, ... , q.
By construction, the F; are mutually exclusive subsets of £]' Hence to

each corner point u(i) of B one can assign a distinct J E F; . Thus there are
at most (';:) different corner points of B.

If D satisfies the Haar condition, then by Corollary 5.3 each corner point
of B has exactly n coordinates equal to zero. Each of the G') choices of
n coordinates from the m yields an n X (n + I) matrix M for which dim
(Ker M) = I, and hence each of the (7,') possible choices produces a different
corner point of B. Q.E.D.

Corollary 5.2 was first proved by Motzkin and Walsh [2, Theorem 6]
in the following form:

Let E consist of the real points x, ,... , x'" (m n -+- 1), let F(x) be defined on E,
let p (0 p < 1) be given, and let the functions o/'(x)"", o/n+l(X) satisfy Condition
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A. Then every function P(x) "" L:~~~ O:jifi;(x) of best approximation measured by
the deviation

m

L Jl-k IF(Xk) - P(Xk)?'
k-l

coincides with F(x) in at least n + I points of E.

Condition A says that the m X (n + 1) matrix (!f;j(xi )) has rank n + 1.
Tn the same paper, Motzkin and Walsh observe that

Theorem 6 implies that every extremal polynomial P(x) is found by interpola­
tion to F(x) in n + J points of E; there exists but a finite number of polynomials
interpolating to F(x) in n + J points of E, so every extremal polynomial can be
found merely by comparing their measures of approximation.

9

In our terminology, Motzkin and Walsh assert that there are but a finite
number of points Z E B which have at least n coordinates equal to zero,
so by checking these points one can solve problem (P*) and hence problem (P).

Without making a further assumption about the class of interpolating
functions, i.e., about our matrix D, there need not be only a finite number
of polynomials interpolating F(x) at n + I points of E. As Corollary 5.3
indicates, assuming the Haar condition is sufficient to establish Motzkin
and Walsh's assertion. When the Haar condition is violated, however,
one can easily construct counterexamples to the assertion. Suppose m = 3,
F(xl ) = F(x2) = 0, F(x3) = !f;1(X1) = !f;1(X2) = !f;2(X1) = !f;2(X2) = ~JlX3) = I,
and QJ1(X3) = -2. The matrix

~I (!f;lx;)) = ( ~ :)

-2 It

clearly has rank n -+ I = 2, so Condition A is satisfied. For any ex E IR

satisfies P(x1) = P(x2) = 0, so that P(x) interpolates F(x) in n + 1 = 2
points of E. Clearly, there are an infinite number of these interpolating
polynomials showing that the observation of Motzkin and Walsh is incorrect.
Theorems 5.1 and 5.6 guarantee that the given approximation problem can
always be solved in a finite number of steps.

6. SOLUTION OF PROBLEM (P*)

The formal similarity of problem (P*) with linear programming problems
suggests an exchange algorithm moving from one corner to an adjacent
corner always increasing the value of the objective function (s I w) until
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a solution of problem (P*) is found. Following the example of the simplex
method, such an algorithm is easily described. The corner point of B obtained
by such an algorithm, however, need not solve problem (P*) because of the
nonconvexity of the II)-unit ball, 0 < p < 1. Figure 1 shows an example
in which a local maximum need not be a global maximum. However, guided
by the above analogy, we investigated several exchange algorithms. We
describe them in the next section.

FIG. I. Intersection of the five-dimensional IO.2-unit ball with the plane spanned by
the vectors

Indeed, one sure method of solving problem (P*), and hence (P) also,
is to find all of the corner points of B and compare their inner product with s.

Remark 6.1. Given Z E K ffi (s), there exists a unique f3 E [Rn+l such that
Z = Df3. Also, since s E K.1-, (z Is) = (Df3 1s) = f3n+1(s is). Recall that
problem (P*) requires us to

maximize (s I w) over all WE K (s), : W I'v ~~c I.

In view of the above observation, this is the same as

maximize f3n+\ over all f3 E [R'" 1, !i Df3 11/1 = 1,

where f3 = (f31 ,... , f3n+\).

(6.1.1)
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Using (6.1.1) as our formulation of problem (P*), to solve the problem
we need only find all those f3 E IRn +1 for which Df3 is a corner point of B,
select one whose (n + I)-coordinate is the largest, say f3*, and then z = Df3*
solves problem (P*). Using Theorem 3.1, one can then solve problem (P).

Before outlining in more detail such an algorithm, we define two functions
that will be useful in ensuring that each corner point of B is found exactly
once.

DEFINITION 6.2. Let

Define if: T --+ U by the following rules. Given t ET,

(1) Set to = t, Uo = 0, and i = 1.

(2) Find Ui EN such that Ui-l < Ui ~ m - n + 1 and

,",-1 (m - .I.') -:::::: (m - U.i).
1 ~ ti - 1 - '" ~. L... n - I n - I

J=1-+U i _ 1

(3) Set

'"f"1 (m - J.")ti = t i - 1 - L...
;~I+'"i-l n -- I

and increment i by 1.

(4) Repeat steps 2 and 3 until Un has been found.

Then if(t) = UE U, where the components U1 ,... , Un of U were found above.
By convention, :L;=" (-) = 0 if p- > v.

One can show [3] that if is a one-to-one function, and hence if has an
inverse. By rearranging step 3 of Definition 6.2, we find

if-l(U) = 1 + i~ [;=:~~-1 (: ={)].
where Uo = 0 and :L;=" (-) = 0 if p- > v.

DEFINITION 6.3. Let T and U be as in Definition 6.2. Define @: U --+ T
by @ = if-I.

ALGORITHM 6.4. (1) Set q = 1, Pi = 1, f3i = 0 for i = 1,... , (~).

(2) Compute if(q) = (k1 ,... , kn)T.
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(3) Construct
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A C]
11tt

and set I = {k1 , ... , k n }.

(4) Select i E {1, ... , m}\f, and form the matrix C = U).
(5) If C contains n + I linearly independent rows, then go to step 7,

otherwise go to step 6.

(6) Set A equal to C, I = I U {i}, and return to step 4.

(7) Solve Ax = 0, (ri I x) = 1.

(8) Compute Dx and y = II Dx IJ~!ji.

(9) Set fJq = I X n+1 I/y and z(q) = (sgn X n+1/Y) Dx.

(10) Form all possible sets containing exactly n elements of J(Dx).

(11) For i = {Jl ,... , in} found in step 10, where 1 ~ il < i2 < ... <
in ~ m, compute <P(j) = t and set Pt = 0.

(12) If Pi = 0, i = 1,... , (',;'), then go to step 13. Otherwise, let q be
the smallest integer k, 1 ~ k ~ (~'), such that Pk = 1. Return to step 2.

(13) Select k, 1 ~ k ~ (',;'), with

Then z(k) solves problem (P*) and

max{(s I w) Iw E k EB (s), :! w lip = 1} = fJis Is).

In step 5, one must eventually answer the question in the affirmative
since the rank of D is n + I by hypothesis. The question itself can be answered
in a number of ways. For example, one might orthogonalize the rows of C
and check whether any zero rows occur. This method will also help when
step 7 is reached since one then knows which rows of C yield a nonsingular
matrix G with which to solve Gx = en' Steps 10 and II are present to
exploit Lemma 5.5, which says that some of the original (',;') possible corner
points may in fact be redundant. In step 9, one need not save all of the fJi
and z(i), but only the current largest fJi and the corresponding z(i) which
would make step 13 unnecessary.

Algorithm 6.4 solves problem (P*) for any choice of positive integers m, n
with m > n. The price paid for this flexibility is a considerable amount of
index manipulation. In the cases where dim K is either very small or nearly
equal to m, we can avoid much of this work by developing special algorithms
designed to solve only problems with a particular fixed choice of dim K.
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ALGORITHM 6.5. If dim K = m - 1, then Corollary 5.4 gives the
solution of problem (P*).

Corollary 5.2 and some algebraic manipulations lead to the following
special algorithms for solving problem (P*).

ALGORITHM 6.6. Let dim K = m - 2, a E (K EB (s))1-\{O}, S = (Sb'''' smY,
a = (al , ... , amY, and Z = (ZI , ... , zmY. With

(6.6.1)
=0,

find iL, v such thatf"v = max{/;; I I :(; i, j :(; m, i =1= j}. Set

1 av I sgn s"

Zv = (I a" 1P + 1Q v IP)l/P •

Z" = (I a" IP + I Qv IP)I/P ,

I a" I sgn Sv

Then a solution of problem (P*) is Z = z"e" + zvev .

ALGORITHM 6.1. Let dim K = m - 3 and S = (SI , ... , sm). Find linearly
independent vectors (al , ... , am), (b l , ... , bm) E (K EB (s))1-. Given distinct
i, j, k between 1 and m, let

Find A, iL, v such that g~"v = max{ gijk I 1 ~ i,j, k :(; m; all distinct}, where

gijk = (I AjBksi I + 1AiBks; I + I A;Bisk I)ID

=0

D = (I AjBk IP + I AiBk I
P + I A;B; I

P)1fP.

if D =1= °
if D = 0,

Set
z~ = I A"Bv I sgn s~/D,

z" = I A~Bv 1 sgn s...lD,

Zv = IA"B~ I sgn svlD.

Then z = Z~e~ + Z"e" + Zvev solves problem (P*).
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ALGORITHM 6.8. Suppose that K = (a), where a c= (a J , ... , a",) and
.I' = (.1'1 ,... , .I'm). Set

-.I', sgn a,
ex· = -----------

1 as _- a -s I I !II
t l 1·'//

and

Let fL satisfy {3" = max{{3i i I $- i :S; m}. Then a solution of problem (P*) is
z = (X"a + {3"s.

7. LOCAL SOLUTIONS

Algorithms 6.4 through 6.8 have two distinguishing features-one good
and the other bad. On the one hand, they always work, i.e., they give the
correct solution of problem (P*). On the other hand, Algorithm 6.4 in
particular can involve a tremendous amount of work since every corner
point of B must be computed. Consequently, unless m and n are fairly small
numbers or the Haar condition is so flagrantly violated that the actual
number of corner points of B is reasonably small, Algorithm 6.4 does not
represent a computationally feasible method for finding the solution of
problem (P*).

DEFINITION 7.1. Let x, y be corner points of B. We say that x and yare
adjacent if {rj Ij E lex) n ley)} contains n - I linearly independent vectors.

The idea behind this definition is most readily seen if we assume that
the Haar condition holds. In that situation, the fact that x and yare adjacent
corner points of B implies that both lex) and ley) have exactly n elements
and {rj I j E lex) n ley)} contains n - I linearly independent row vectors;
i.e., lex) n ley) contains exactly n - I elements. Thus there is an i E lex)
and a j E ley) such that lex) = ley) U {j}\{i} and ley) = lex) U{i}\{j}.
In terms of coordinates, all but one of the zero coordinates of either x or y
is also a zero coordinate of the other.

Remark 7.2. Adjacent corner points of B can be much farther apart
than one might expect a term like adjacent to allow. For example, if K is
one-dimensional, then each two corner points of B are adjacent since a
corner point need only have one coordinate equal to zero.

DEFINITION 7.3. A corner point z of B is called a local solution of (P*)
if (z I .1') ~ (x I .1') for all corner points x adjacent to z.

It follows from the definition of adjacent corner points of B that there
can exist corner points of B which are not adjacent. Consequently, a local
solution of problem (P*) need not be a solution of problem (P*).
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We now present an exchange algorithm similar to the simplex method.
The solution found in this manner may, however, only be a local solution
of problem (P*).

ALGORITHM 7.4. (1) Find a corner point z = Df3 of B and set I = J(z).

(2) Select n linearly independent rowS'i '''','i of D with il , ... , in E I.
, n

(3) Pick f-t E{il ,... , in}.

(4) Relabel'i '''·,'i as PI , ... , Pn with Pn=',,·, n

(5) Orthogonalize the pj by (i) PI = PI' and (ii) for i = 2, ... , n,
Pi = Pi - L~:~ ((Pi I pi)!(Pj I Pj)) Pi .

(6) Pick k E {I,... , m}\I.

(7) Set P = Yk II DYk II-liP Sgn(Yk)n+l' where Yk = Pn - ((Pn I 'k)!(f3 I 'k))f3.
We assert that z = DP is a corner point of B. By construction, II z lip = 1
and {'i, ,... , 'in' ',J are n + 1 linearly independent vectors. {il , ... , in, k}\{f-t} C
J(z), so dim N(z) ~ 1. But dim N(z) ;? 1 since PE N(z)\{O}. Thus dim
N(z) == 1 showing that z is a corner point of B.

(8) (i) If Pn+l > f3n+l' replace f3 by P and z by z. Set I = J(z) and
then return to step 2.

(ii) If Pn+l ~ f3n+l' return to step 6 and try another k E {I,... , m}\I
until all have been tried.

(iii) When all k E {I,... , m}\I have been tried in (ii), return to step 3
to choose another f-t E{il ,... , in}.

(iv) When all f-t E{il ,... , in} have been tried in (iii), z is a local
solution of problem (P*) with value f3n+l .

Step 1 can be accomplished in the same manner in which corner points of B
were found in Algorithm 6.4. Experience with a few examples indicates
that a good starting corner to find in step 1 is that z which has zero coor­
dinates where the coordinates of the vector s are the smallest in absolute
value. In many cases, this corner point of B actually solves problem (P*).

Step 8(i) ensures that Algorithm 7.4 eventually terminates since the
value of the objective function f3n+l = (s : z) is nondecreasing and there are
only a finite number of corner points. Lemma 5.5 guarantees that in step
8(iii) we need only check the n coordinates listed rather than all of the zero
coordinates. The assertion in step 8(iv) that the point z found by Algorithm
7.4 is a local solution of problem (P*) follows directly from Definition 7.3.

If dim(K EB (s)) is close to dim !Rill, then the computations involved in
choosing n + 1 linearly independent row vectors (step 2) and orthogonalizing
them (step 5) can become tedious. However, when n is nearly equal to m,
then dim{(K EB (s)).L} = m - n - 1 is quite small. An exchange algorithm
designed to exploit this fact can be found in [3].
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8. THE I,-CASE

We observe that many of the results obtained for °< p < I also hold
for the case where p = I, thus providing a method of solving the It problem.
With p = j, Theorem 3.1 is a special case of Theorem 2.4 in [4]. If we
alter Lemma 4.3 so that (iii) reads H ~ z supports By at z, i.e., either
f(x) <fez) for all x E By\{z} orf(x) > fez) for all x E By\{z}, then Lemma 4.3
is true for p = 1. In the proof, choose x, 8, y, and E as before, but obtain a
contradiction either to the hypothesis that H + z supports By at z or to the
strictness of the support. Theorem 4.5 follows immediately for p =~ I if we
again assume that H -I-- z properly supports B at z. Theorem 5.1 and all
three of its corollaries, Lemma 5.5, and Theorem 5.6 all hold as previously
stated with p = 1.

Algorithm 7.4 solves problem (P*) when p c= 1 since the Icunit ball
being convex eliminates the possibility of finding a local solution that is not
a global solution of problem (P*).

9. NUMERICAL RESULTS

Algorithm 6.4 was programmed in FORTRAN IV for a CDC 6500,
and two examples were studied. The first example appears in [1, p. 44].
The overdetermined system of linear equations is

x -I-- y = 3,

x -y = I,

x -I-- 2y == 7,

2x '-;- 4y = 11.1,

2x -I-- y = 6.9,

3x -I-- y = 7.2.

This system poses special difficulties because the solution of the 11 problem
is not unique. All points on the segment joining

PI = (1.77, 1.89) and P2 = (2.51667, 1.51667)

solve the II problem with a minimal 11 error vector of length 4.7.
For p = I, the algorithm found both corner point solutions. For p = nj I0,

n = 1, 2, ... , 9, the Ip problem has the unique solution P2' For each case,
the algorithm took less than one second to compute the solutions.
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FIG. 2. Intersection of the three-dimensional Ip-unit ball, p = 1, 0.9, 0.8, ... , 0.2, with
the plane spanned by the vectors

CD' G)·
For a second example, we chose K to be the subspace spanned by the

single vector

( i), and took b to be (~)..
-5 1/

The intersections of K EB (s) and the three-dimensional lp-unit balls for
p = n/IO, n = 2, ... , 10, are shown in Fig. 2. s runs diagonally from the
upper left to the lower right, passing through the corner points shown.
The solution of problem (P*) "jumps" near p = 0.777, as the figure indicates.
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